
Metalogic Systems Pvt. Ltd.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Metalogic Systems Pvt. Ltd.  

 

 

 

Micro-Controller Porting Tool 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Overall Specifications 

Specifications for First Release 
Stages of Development 
Work Allocation 
Milestones and Time Lines 

Appendix 
 

 

Overall Specifications 

1. Port the assembly program written for source processor to an assembly program for target 
processor 



Metalogic Systems Pvt. Ltd.  

 
 
 

2. Supports all the available architectures of the processors (DSP, microcontroller..) available 
in the market. The user selects the source and target processor from a list. 

 
 

3. Device Profiler – for an assembly program, the porting tool should provide an analysis report 
for device selection based on 

 
(i) Least execution time 
(ii) Available peripherals on the chip 
(iii) The user can get a performance profiler based on 

(a) Processors, controllers 
(b) Devices that have a specific set of peripherals, speed, I/O ports 

 

 
4. The control flow (logic) of the program can be expressed as a flowchart. The IR will serve as 

the base for creating the flow chart. 



Metalogic Systems Pvt. Ltd.  

5. Optimization – for 
(i) Reducing the execution time 
(ii) Power reduction 
(iii) Compact program – LUT pattern analyzer. 

 
6. Peripheral Configuration Code Generator (PCCG) – for a configuration specified by the 

user the tool should be capable of generating the corresponding code. Only the initialization 
code will be generated. This has no connection with the porting tool, in a sense that the 
database created for the porting tool will be used by PCCG. The output will be an assembly 
language program that can be used in the program. This will help user the user to configure 
the peripherals without having the knowledge of the associated SFRs. See Fig. 

 
 

7. Peripheral Configuration Porting (PCP) – With the available peripheral configuration for 
a specific device, an equivalent code for other device can be generated. This provides the  
user a quick code without a need to learn the bit pattern in SFRs. The initialization 
instructions for one device can be ported to other device(s). 

 
For instance the user knows the configuration of the UART of the source processor. 

For the same configuration but for a different device the settings can be ported. The SFR bit 
patterns are suitably modified to reflect the source processor settings. The input can be 
selected from the drop down menu or alternatively the initialization section can be copy and 
pasted from the source assembly file.. See fig below. 

 
 
 
 
 
 
 
 

 

Specifications for the first Release 

Stage 1 : Basic 
 

1. Porting: Port the assembly program written for source processor to an assembly program for 
target processor provided it falls in the selected architecture category. 

 
2. Architectures: Supports the following architectures 

(i) ARM 
(ii) M8C 
(iii) PIC 



Metalogic Systems Pvt. Ltd.  

 
 

3. IDE: The IDE has the following options 
 

S.No Description 
1 Create New Project 
2 Open Existing Project 
3 Create New File 
4 Open New File 
5 Select Source device 
6 Select Target Device The user will be provided an option to select the source 

and target processor. Exact device number will be selected by the user from the 
drop down list. 

7 Search Devices – enter the number 
8 Parallel scrolling of the current source and target files 

9 If user selects specific segment of the code in the source / target file, the 
corresponding converted segment will be highlighted in the target / source file 

10 Same number of files will be created for the target file after porting 

11 The user can see the peripherals enabled in the assembly source. The list of 
peripherals that are available but not enabled in the source assembly file is 
shown. 

12 During the process of porting the user will be prompted with a window 
notifying the mapping of the resources. The resource mapped will be 

(i) Registers 
(ii) Constants 
(iii) Variables in code memory location 

 
S.No Description 

 (iv) Variables in Data memory location 
(v) Initialization section 

13 During the process of porting the number of instructions and  execution speed 
in each of 
(i) Routine (subroutines, ISR) 
(ii) File 
will be provided by the tool 

 
3.1 Porting Process 

The following figure provides the specific steps involved in the porting operation. 



Metalogic Systems Pvt. Ltd.  

 

 
 
 
 
 
 
 
 
 
 
 
 

 3.2 Resource Mapping 
 

The resource mapping during the porting is a pseudo- tool in a sense that mapping will be 
done by the porting tool itself. Further the user is provided the flexibility to choose the 
address/memory location for the variables, constants. The following provides the snapshot of the 
resource mapping by the porting tool. 



Metalogic Systems Pvt. Ltd.  

 
 
 

 

3.3  Port summary 
The porting summary of the project created for porting process will be as shown 

below. 



Metalogic Systems Pvt. Ltd.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.4 Layout of IDE 
The layout of the IDE environment for the ‘porting tool’ is shown below. 



Metalogic Systems Pvt. Ltd.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A generic tool bar with modifications required for the porting tool is shown in the following fig. 



Metalogic Systems Pvt. Ltd.  

 
 
 
 
 
 
 
 
 

 

3.5 Selection of Source and Target device 



Metalogic Systems Pvt. Ltd.  

 
 

4. Config-info: Meaningful information regarding the configuration settings (included in the 
program) of the on-chip peripherals can be extracted. Those not included can be represented 



Metalogic Systems Pvt. Ltd.  

as peripheral not used. The configuration is recovered by reading the bit pattern in the SFRs. 
The source language is assembly. 

 
Example 1 
For Instance, an UART configuration can be represented as follows. 

a) Baud Rate - 9600bps 
b) Stop bit -  2 
c) Start bit - 1 
d) Parity - Odd 
e) Buffer Size - 1 byte 
f) Direction - Transmit Only - in subroutine 1 

- Transmit and Receive - in other subroutines and main 
 

Example 2 
Reading an on-chip ADC configuration will provide the following details 

a) Sampling Rate - 1k samples/sec 
b) No of Bits - 8 bit 

 
5. Valid Data Config: The tool has the data base of the valid configurations of the SFR for the 

supporting processors. The tool should allow configuration editing for the same. 
 

6. Peripheral –info: The on-chip peripherals used by the processor is got from the assembly 
program. 

 
7. Flowchart: The logic of the program can be extracted and be represented as a flowchart 

which provides better readability. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Stage 2 : Extended 



Metalogic Systems Pvt. Ltd.  

1. Device Selection: The tool should allow selection of devices for source and target devices 
based on 

 
(i) Architecture : (ARM, PIC or M8C). See fig below 

 
(ii) Device number: See fig below 

 

 

(iii) Parametric search : Specify the parameters like the following. See Fig Below. 
 

 
(iv) Like Devices: Specify a device (by pointing it a device file) and find an 

equivalent device in terms of the on-chip resources. Resources greater than or 
equal to will be listed. See fig below. 



Metalogic Systems Pvt. Ltd.  

 
 

2. Peripheral Configuration Code Generator (PCCG) – for a configuration specified by the 
user the tool should be capable of generating the corresponding code. Only the initialization 
code will be generated. This has no connection with the porting tool, in a sense that the 
database created for the porting tool will be used by PCCG. The output will be an assembly 
language program that can be used in the program. This will help user the user to configure 
the peripherals without having the knowledge of the associated SFRs. Also see Overall 
specifications number 6. 

 



Metalogic Systems Pvt. Ltd.  

3. Peripheral Configuration Porting (PCP) – With the available peripheral configuration for 
a specific device, an equivalent code for other device can be generated. This provides the  
user a quick code without a need to learn the bit pattern in SFRs. The initialization 
instructions for one device can be ported to other device(s). For instance the user knows the 
configuration of the UART of the source processor. 

 



Metalogic Systems Pvt. Ltd.  

 

For the same configuration but for a different device the settings can be ported. The SFR bit 
patterns are suitably modified to reflect the source processor settings. The input can be selected from 
the drop down menu or alternatively the initialization section can be copy and pasted from the source 
assembly file. See screen shot of the front end application in the ‘overall specifications’ number 7. 

 
4. Other languages: The porting tool should also support the porting from binary(.hex)  file 

(source processor) to the binary(.hex) file (target processor). 

 
 

Stages of Development 

1. Front-end development – GUI – to be developed in eclipse. 
 
2. The features available will be ported to eclipse. The pre-written code will be reused. 

 
3. IDE development – features, design layout, visual representation of features of the porting Tool. 

 
4. Collecting the device details that belonged to each of ARM, M8C and PIC architectures. 

 
5. Grouping the devices based on the architecture, on-chip peripherals, RAM, ROM. 

 
6. Identifying valid SFR configurations in each of the devices and creating a data base. 

 
7. Back-end- Tool development 

 
8. Creating a database for reading assembly language from the binary/opcodes. 

 
9. Creating a Target Specific IR (TSIR) for each of the architecture/devices. 

 
10. Linking the TSIR with the generic IR 

 
11. Optimization development for performance – 

 
a) Reducing the execution time 
b) Power reduction 
c) Compact program – LUT pattern analyzer. 

 
12. Testing the back-end tool for all the features that it claims. An example from a real time 

application is preferred 



Metalogic Systems Pvt. Ltd.  

 

APPENDIX 

 
 

The following information is extracted through the first parsing of the program 
 

1. Starting and ending address of the program. 
2. No of subroutines used in the program. 
3. SFRs used in the program (specific subroutines). 
4. Registers used 
5. Single bit ports 
6. multiple bit Ports used 
7. Labels 
8. Timers 
9. Counters 
10. No of pins used 

 
Types of I/Os. – UART, ADC, DAC, USB, RS232, RS485, RS422, SPI, CAN, I2C, USART 

 
11. No of Digital Inputs 
12. No of Digital Outputs 
13. No of Digital I/Os 
14. No of Analog Inputs 
15. No of Analog Outputs 
16. No of ISR 
17. Data width of the processor used 
18. Vector Address of the ISR 
19. Size of the subroutines 
20. No of user defined software flag 
21. Maximum execution time of the Programs/Subroutines 
22. Maximum execution time of the ISRs 
23. LUT location – RAM wise / ROM wise 
24. No of Time sliced Routines 
25. Execution time of each time-sliced routine – this may be included in the exec time of the 

subroutine 
 

Porting Sequence 
 

1. Each program /routine is a black box 
2. Find the logic of execution between the I and Os 
3. Identify the AI,DI, AO,DO, constants and Variables in RAM &ROM 
4. Determine the logic flow from input to output 
5. Create the IR sequence from the source assembly file 
6. Identify the mnemonic equivalent of the target processor 



Metalogic Systems Pvt. Ltd.  

 

Porting Type 
 

1. Only chip replacement ( Pull out old IC and Plug in the new IC) 
2. Xtend peripheral – some peripherals off chip of the old/source have to be replaced by onchip 

new/target peripherals 
3. Data width/clock speed change in requirement 

 
User Specifies the following 

 
1. Pin replacement 
2. Register replacement 
3. Variables from RAM and ROM 
4. AI, AO, DI, DO replacement 
5. PROM space availability 

 
Areas of Intelligence required by the tool 

 
1. Functions of valid SFR configurations 
2. Read the mnemonics of the porting processor ( source) 
3. Capability to represent the mnemonics in IR 
4. Capability to represent IR in mnemonics / instructions of the target processor 
5. Reads the binary/hex file 
6. Creates the binary/hex file to be downloaded in the target 
7. Creates the flowchart of the main/subroutines 


